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ABSTRACT 

In recent years, New York City metropolitan area was hit by two major hurricanes, Irene and 
Sandy. These extreme weather events had major impacts on the transportation infrastructures, 
including road and subway networks. As an extension of our recent research on this topic, this 
study explores the spatial patterns of infrastructure resilience in New York City using taxi and 
subway ridership data. Neighborhood Tabulation Areas (NTAs) are used as units of analysis. 
The recovery curve of each NTA is modeled using the logistic function to quantify the resilience 
of road and subway systems. Moran’s I tests confirm the spatial correlation of recovery patterns 
for taxi and subway ridership.  To account for this spatial correlation, citywide spatial models are 
estimated, and found to outperform linear models. Factors such as the percentage of area 
influenced by storm surges, the distance to the coast and the average elevation are found to affect 
the infrastructure resilience. The findings in this study provide insights into vulnerability of 
transportation networks and can be utilized for more efficient emergency planning and 
management. 

Keywords: Hurricane, recovery curve, resilience, spatial analysis, taxi and subway data 



    
 

  
  

     
 

    
       

   
    

  
     

     
     

   
      

     
 

    
     

 
      
   

    
 

    
    

  
    

  
 

   
    

   
    

      
     

     
    

  
   

     

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

3 Zhu, Xie, Ozbay, Zuo, Yang 

INTRODUCTION 

Hurricanes are one of the biggest natural disaster threats in the Northeast Corridor of the United 
States. New York City (NYC), which is located in the vulnerable area of Northeast Corridor, 
experienced two major hurricanes in recent years. On August 2011, Hurricane Irene made 
landfall in Brooklyn, NYC. One year later, Hurricane Sandy landed in New Jersey, south of 
NYC. As shown in Figure 1, both hurricanes caused inundation of coastal areas of NYC and 
brought different levels of impact on city’s transportation services and infrastructures: Hurricane 
Irene led to inland flooding and temporary suspension of city-wide public transit. Since most of 
infrastructures were intact, public transit was back to normal one day after the landfall. Hurricane 
Sandy, however, turned into one of the most costly natural disasters in the recent history of 
NYC. Unlike Hurricane Irene, several subway stations and tunnels were flooded, especially the 
ones located in Lower Manhattan and Coney Island (1). Although Metropolitan Transportation 
Authority (MTA) restored half of the major service within a week after the landfall, it took 
several months for stations seriously damaged to be fully functional, due to the mass erosion of 
power supply and tube structure by salt water. Both hurricanes also caused disruption and 
destruction of the highway network. Major bridges and tunnels were closed, and several tunnels 
were flooded during Hurricane Sandy. 

After suffering from disruption and devastation of hurricanes, researchers started to 
show an increasing interest in strengthening the city infrastructure to avoid, or at least to mitigate 
the impact of future coastal storms. Therefore, it is necessary to evaluate the resilience of 
roadway and transit networks in terms of vulnerability to storm surge. Current 6-category 
evacuation zone system based on NYC’s hurricane contingency plan identifies possible impact to 
the city districts. A recent study by the authors of this paper (2-4) explored the recovery patterns 
of highway and subway networks, and developed multi-layer models for evacuation zones in 
NYC(2). In this paper, logistic curves, which is frequently used for evacuation demand 
modeling, was used for recovery modeling. The results showed a clear relationship between 
recovery patterns and evacuation zone characteristics, and it seemed plausible that the road 
network has better resilience than the subway system. However, since zones of the same 
category are widely distributed, it is hard to quantify different levels of impact on areas in the 
same category, and it is not trivial to distinguish damage caused to highway or subway networks 
separately. 

As a follow-up to our previous paper where the analysis is done in terms of evacuation 
zones of NYC (2), the goal of this study is to model the resilience of roadway and transit systems 
in terms of individual neighborhoods of NYC, and conduct statistical spatial analysis to explore 
inter-correlation of zonal resilience. Besides, this study explores the resilience of the same 
network for two different events, namely, Hurricanes Sandy and Irene. Compared with previous 
models based on evacuation zones, our new models can better reveal the spatial distribution of 
recovery characteristics, and make it possible to predict resilience of highway and transit 
networks based on the geographical location and hurricane intensity. 
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2 
3 Figure 1 Areas influenced by storm surges during Hurricanes Irene and Sandy in NYC (5). 

4 
5 LITERATURE REVIEW 
6 
7 Transportation infrastructure, including road networks, subway stations and tunnels alike, are 
8 faced with disruptions due to natural disasters like hurricanes. In recent years, researchers started 
9 to show interests in ability of transportation systems to withstand and recover from the 

10 disruptions, and the concept of resilience is introduced. Heaslip et al. (6) pointed out to two key 
11 factors of resilience: How can the system maintain demonstrated level of service (LOS), or how 
12 long it takes for system to restore to demonstrated LOS. Similarly, Bruneau et al. (7) introduced 
13 “Resilience Triangle”, to quantify three key issues of resilience, that is possibility of failure, 
14 severity of outcome, and duration of recovery. They defined the area of the triangle as Loss of 
15 Resilience (LoR), which can be mathematically represented in Equation (1): 
16 
17  

1

0

)](100[
t

t
dttQLoR (1) 

18 
19 where Q(t) is the time-dependent quality of infrastructure (7). Therefore, the LoR can be 
20 determined by depth of initial disruption and speed of quality restoration, as the key issues stated 
21 above. 
22 
23 Transportation System Resilience 

24 
25 Testa et al. (8) measured the resilience of highway network of metropolitan area of NYC by 
26 testing the topological graph properties under various scenarios of link removal. According to 
27 Donovan and Work (9), NYC taxi data set can be used to measure roadway resilience of NYC 
28 during Hurricane Sandy by measuring the deviation of normalized travel times between four 
29 different regions of the city. 
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Hosseini and Barker (10) utilized Bayesian Network approach to quantify resilience as a 
function of adaptive and restorative capacities, and the model was demonstrated in a case of 
inland waterway ports. Adjetey-Bahun et al. (11) developed a simulation-based model to 
quantify resilience of the mass railway transit system in Paris. The model evaluates system 
resilience during perturbation by quantifying passenger delay and load. Simulation results 
indicated resiliency of the system, which is consistent with observation. D’Lima and Medda (12) 
utilized a mean-reverting stochastic model to explore daily fluctuations of London Underground 
in terms of subway lines. 

Logistic functions, as first proposed by Belgian mathematician Pierre Francois Verhulst 
in 1838 to analyze population growth in Belgium (13), was widely used in pre and post-hurricane 
studies. The concept of S-Curve was introduced by Lewis (14) to describe evacuation pattern 
before hurricanes. Hobeika et al. (15) suggested the use of logistic curve based on behavior 
research. Fu et al. (16) used post-hurricane Floyd survey of South Carolina to model the 
evacuation response curve. Same models are proved to be effective to estimate evacuation 
demand in Hurricane Andrew. Li and Ozbay (17) used traffic count data of Cape May County, 
New Jersey during Hurricane Irene to build empirical response curve, which showed better fit 
with logistic function. Logistic function was also used as a demand generation approach by 
Ozbay and Yazici (18). 

Spatial Analysis of Transportation Networks 

Spatial analysis is widely used in safety assessment of transportation networks. Tasic and Porter 
(19) built an area-wide model for Chicago to evaluate spatial association of safety issues and 
multi-model transportation infrastructure, and found strong relationship of crashes and 
availability of transportation service. Xie et al. (20) developed an incident duration model for 
Hurricane Sandy and confirmed spatial dependencies of durations of neighboring incidents. 
Spatial error and spatial lag models are further developed to indicate factors affect duration of 
incident. 

In this paper, previously proposed methods of resilience quantification and logistic 
modeling are used for NYC by sub-dividing NYC into small units based on Neighborhood 
Tabulation Areas. Then, factors affecting recovery patterns and resilience are identified and 
analyzed. Based on results of this highly detailed spatial resilience modeling approach, spatial 
dependence tests and further statistical modeling efforts are made to study resilience 
characteristics for roadway and subway systems of NYC for two different Hurricanes. 

DATA 

In order to analyze resilience of NYC’s highway and transit networks, two types of dataset are 
used. One is NYC taxi trips data, which was made available by NYC Taxi & Limousine 
Commission (TLC) (9, 21). The dataset contains taxi trips from year 2010 to 2013. Each trip 
record includes time and location information of pick-ups and drop-offs. The other is subway 
ridership data obtained from data the feed of Metropolitan Transportation Authority (MTA) in 
terms of turnstile dataset (22), which is stored in individual weekly text files containing hour by 
hour counts along with other related spatio-temporal information. Each row in the weekly file 
contains a record of entry and exit counts, and the remote unit (station) and control area 
(turnstile) that the counter belongs to. In normal situations, counter readings of each turnstile are 
recorded every four hours, but the time of reading differs among stations. In order to get the 



    
 

1  ridership for each subway  station, it’s necessary to convert counter readings to turnstile ridership 
2  by  subtracting  last and first reading of a day, and then calculate sum of all turnstiles.  Although 
3  the subway dataset has fields of Staten Island Railway, insufficient records are found in study  
4  periods, therefore, transit network of Staten Island is excluded from the analysis.  
5   Since we aimed to track recovery patterns, for both hurricanes, 12 days after landfall  
6  were  chosen as the study  periods. Specifically, Aug 28 to Sep 8, 2011 for Hurricane  Irene, and 
7  Oct 29 to Nov 10, 2012 for Hurricane Sandy.  For comparison purpose, datasets of same periods 
8  of previous  years are used.  Since traffic in NYC has significant day-of-the-week pattern, we  find 
9  days closest to days of week in the study period.  

10  Both datasets of taxi and subways include noisy and erroneous records, and it is crucial 
11  to select appropriate part and filter  the data.  For taxi trips, according to (9), there are significant 
12  amounts of error in taxi dataset, including missing  or unrealistic  coordinates, impossible travel 
13  times or speeds. For subway trips, errors including extremely low or high ridership values, which 
14  is caused by counter reset due to maintenance need to be filtered out.   
15  Other datasets used in this study  include  socioeconomic  demographic (SED) data of  
16  NYC  obtained from US  Census Bureau 1  , surge  area data of both hurricanes from FEMA (5), 
17  elevation data of  NYC  (23). For modeling purpose, these datasets  were  further featured into 
18  levels of Neighborhood Tabulation Area (NTA) (24).  Table 1  presents the  description and 
19  descriptive analysis of key  variables. The  explanatory variables are  grouped into three  
20  categories: geographical, socio-economical and transportation.  The computation of dependent 
21  variables listed in Table 1  is introduced in the next section.  
22    

    

      
      
     
     

       
      

     
      
     

     
     

     
       

      
     

     
      

     

23 Table 1 Description and Descriptive Analysis of Key Variables (N=195) 

Description Mean SD 
Dependent 

Variable 

TI_LoR LoR for the taxi system during Irene 0.447 0.393 
SI_LoR LoR for the subway system during Irene 0.855 0.597 
TS_LoR LoR for the taxi system during Sandy 0.858 1.189 
SS_LoR LoR for the subway system during Sandy 4.787 2.063 
Geographical 

Near_Dist Distance to coast (103 feet) 5.617 4.251 
Elevation Average elevation (feet) 78.970 36.367 
Pct_Surge Percentage of area influenced by storm surges 0.107 0.192 
Manhattan 1 if in Manhattan, 0 otherwise 0.149 0.357 
Brooklyn 1 if in Brooklyn, 0 otherwise 0.262 0.441 
Queens 1 if in Queens, 0 otherwise 0.297 0.458 
Bronx 1 if in Bronx, 0 otherwise 0.195 0.397 
Socio-economical 

Population Total population in 2010 (103) 42.047 22.484 
Edu_Bac Population with bachelor’s degree or higher (103) 9.704 10.117 
Avg_Income Average income (103 $) 73.994 35.890 
Employment Number of the employed (103) 19.371 11.457 
Schools Number of schools 14.056 10.011 
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1 Source: http://factfinder.census.gov 

http://factfinder.census.gov
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Roads_Mi   Length of roadways (mile)  48.083  28.431  
Veh_Own   Number of families with private vehicles  (103)  6.992  3.903  
Transportation        
Sub_Time   Subway  access time (min)  16.771  16.749  
Bus_Stop   Number of  bus stops  66.323  41.630  

1   
2  MODELING  NEIGHBORHOOD-BASED RECOVERY  PATTERNS  
3   
4  The main objective of this subsection is to propose  recovery models and identify coefficients for  
5  all neighborhoods, and then find spatial correlations of model parameters. Travel modes and 
6  weather  events are modeled separately.  
7   
8  Using NTAs as Units of  Analysis  

9   
10  First, the processed datasets of taxi trips and subway  ridership  will be mapped into subareas  of 
11  NYC  thus  it is necessary  to determine unit of study  from the very beginning. In this paper,  
12  neighborhoods of NYC in terms of NTAs  are  used as the geographical units  of modeling.  NTA is 
13  a set of polygons created by New York City Department of City Planning, and used for  
14  representing data from Census and American Community Survey  (24). There are overall 195 
15  NTAs in NYC and each NTA corresponds to one  Neighborhood with unique  ID and name. 
16  Figure  2  (b) demonstrates NTAs of NYC, colored by  Borough the NTA belongs to.  Compared 
17  with evacuation zones shown in  Figure  2  (a) (2), there are two advantages of selecting NTAs. 
18  First, the sizes of NTAs are appropriate for the analysis, especially  for subway data  because  
19  these  areas are neither too big that they  may  cover more than one category  of evacuation zones, 
20  nor too small that they  may not include even one subway station. Second, as mentioned above, 
21  unlike Traffic Analysis  Zones (TAZs) or Census Tracts, each NTA also has a familiar name, so 
22  it’s much easier to follow the travel  patterns using  NTAs.   

23 
24 
25 

 
      Figure 2 Units of analysis: evacuation zones (25) vs NTAs (24). 
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1 Outputs of first step are daily taxi trips and subway ridership of each NTA for each 
2 hurricane and study period, which were later converted into time-dependent recovery rates. The 
3 rate of recovery is defined as the quotient of trips during a certain hurricane period divided by 
4 trips during a corresponding normal (control) period. Recovery rates of 12-day period for all 

NTAs are calculated. Then recovery rates are processed to conform to satisfy prerequisites of the 
6 logistic model: Firstly, values greater than one are rounded to one. Also, if the recovery rate 
7 reaches one, we assume that the area has already been recovered, then recovery rate is kept as 
8 one for the remaining portion of the study period. 
9 For NYC, majority of taxi trips are located in Manhattan, Downtown Brooklyn, densely 

populated areas in Queens and Bronx and major airports. For other neighborhoods farther away 
11 from these areas, taxi trips are much fewer. Also, subway service is not available in all of NTAs. 
12 Therefore, NTAs with no data availability for specific travel modes are filtered out. 
13 
14 Modeling Resilience for each NTA 

16 This section briefly describes the functional form used for modeling recovery rates for each 
17 NTA, performance of model calibration efforts, and definition of zonal resilience. More detailed 
18 discussion about this specific methodology are given in (2). 
19 Basic logistic function is used for modeling evacuation curves, as shown in Equation 

(2): 
21 

22 (2) 

23 
24 where 𝑃𝑡 represents recovery rate of area by time 𝑡, α is the factor affecting slope of the recovery 

rate, 𝐻 is half recovery time, in other words the time system reaches half of the service capacity. 
26 Therefore, α and 𝐻 can determine the shape of S-curve, which reflects recovery behavior and 
27 resilience for each NTA. 
28 Nonlinear Least Square Error (LSE), as shown in Equation (3) is used to fit the model 
29 by comparing difference between modeled function and empirically obtained data points. 

31 2)(
1

0





t

tt

tt PyLSE (3) 

32 
33 where 𝑦𝑡 is the observed recovery rate of day 𝑡, 𝑃𝑡 is logistic function (Equation (2)). The values 
34 of t0 and t1 are 0 and 11. The objective is to minimize LSE, the difference between observed and 

estimated recovery rates. For subway and taxi trips each NTA, distinct pairs of model parameters 
36 (α and 𝐻) are calibrated to minimize S. 
37 Another critical factor that need to be identified is LoR, which can be calculated using 
38 abovementioned model in Equation (1) (7). By using logistic function 𝑃𝑡 to replace 𝑄𝑡, Equation 
39 (1) can be rewritten as: 

41 (4) 

42 
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where LoR is the loss of resilience from the time original hurricane impact, which is the area 
enclosed by the logistic function, y axis and line x=1 (100%). 

The logistic functions are built for most of areas, except following situations: 1. 
Recovery rates of entire study period are one. In this case, the area was not affected by the storm 
surge, and LoR is zero. 2. Recovery rates of period are zero, which happened in transit network 
of certain NTAs in Hurricane Sandy, in which subway restoration takes longer than the study 
period, therefore the LoR is maximum, the value is 11 in this case. 

Empirical Analysis of Resilience 

Since this study covers four recovery patterns of two networks for two distinct weather events, 
and each of them contains sub-models of most NTAs, it is not practical to show this multi-layer 
model in a table format. Instead, recovery characteristics are visualized on a map of NYC in 
terms of NTAs to show four abovementioned critical factors (α, 𝐻 LSE and LoR), and each 
figure has maps of four recovery scenarios (Irene Highway (Taxi), Sandy Highway (Taxi), Irene 
Subway and Sandy Subway). To be able to provide a side-by-side comparison, subplots are 
created using the same scale for four scenarios. Another point worth mentioning is the selection 
of color gradient. Plots of all four terms use green and red gradient, but colors of start and end 
points varied among terms, and greener plot always stand for better recovery situation or 
goodness of fit of models. For α, since higher value stands for steeper slope of recovery function, 
greener colors are used for higher values. For 𝐻, gradient is from green to red, since 𝐻 is an 
indicator of recovery time. LSE and LoR plots use red to show higher values, which stand for 
worse curve fit of empirical data, and higher loss of resilience, respectively. As mentioned 
above, Neighborhoods with no data input are excluded from modeling, as shown in grey in the 
figures. 

Parameter α from the modeling results are visualized in Figure 3. From this Figure 3, it 
can be seen that both highway and transit networks have higher α values for Hurricane Irene 
compared with Hurricane Sandy, which implies faster speed (lower travel time) in the aftermath 
of Hurricane Irene. in Figure 3 (a) and Figure 3 (b), α values of Manhattan and coastal 
neighborhoods are lower than those from inland neighborhoods. In addition, for Hurricane Irene, 
most of inland areas in Brooklyn and Queens are green colored, while only a small proportion of 
these areas is shown in green for Hurricane Sandy. It can be inferred that magnitude of 
disruption of highway network based on taxi data is greater for Hurricane Sandy. Compared with 
the recovery of highway network, α values of subway network is relatively lower for both 
hurricanes. Also, in Figure 3 (c), α values of most areas are similar, with the exception of few 
NTAs, in which subway stations or depots suffered from storm surge. The values for Hurricane 
Sandy for the entire city are significantly low, as shown from the wide range of red colored 
zones in Figure 3 (d). 
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1 
2 Figure 3 Parameter Alpha (slope of recovery rate). 



    
 

  
     

  
    

     
         

       
     

  
     

      
    

     

1
2
3
4
5
6
7
8
9

10
11
12
13

11 Zhu, Xie, Ozbay, Zuo, Yang 

Figure 4 Parameter H (the time recovery reaches half of service capacity). 

Parameter 𝐻 is shown on Figure 4. As mentioned above, 𝐻 stands for the time that 
network recovery reaches half of service capacity, therefore, a lower value of 𝐻 implies shorter 
recovery time. Based on Figure 4 (a) and Figure 4 (c), during Hurricane Irene, 𝐻 values are 
below 1 and nearly identical for most of NTAs. That means that both highway and transit 
networks were back to full capacity in two days after the landfall of Hurricane Irene, due to the 
limited impact of that storm. For Hurricane Sandy, as expected, subway network has much 
higher 𝐻 values. However, highway network in some neighborhoods tend to have lower 𝐻 
values than Hurricane Irene. Particularly, certain NTAs in Bronx has negative H values. The 
negative value of 𝐻 means that the initial recovery rate of the NTA is already greater than 50%. 
One possible reason for this outcome is that these areas were not impacted by the hurricane. 
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1  According  to Figure  1  (a), however,  due to the suspension of subway service, more  travel 
2  demand might have been  diverted to taxi  mode.  
3   

4 
5 Figure 5 Least square errors (LSE) of model results. 

6 
7 Figure 5 shows calibration results of estimated models. It can be seen that the LSEs for 
8 taxi data based models are much lower than subway data based models, which implies better fit 
9 of taxi models. 

10 The hurricane induced LoRs are shown in Figure 6. It can be observed that both 
11 networks were quite resilient during Hurricane Irene, compared with high LoRs in Hurricane 
12 Sandy. The overall LoRs for taxi data tend to be lower than the ones based on subway data, 
13 which was given in the conclusion section of the previous study (2). Besides, distribution of 
14 LoRs appears to be more spatially correlated for the highway network. As shown in Figure 6 (b), 
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1  neighborhoods located in Bronx  are found to be  more resilient than the ones in Manhattan and 
2  Brooklyn. Also, from uptown to downtown Manhattan, LoRs  gradually increase. The south tip of 
3  Manhattan has highest LoRs, which is consistent with the map of Sandy surge zones  presented in 
4  Figure  1.  Unlike taxi trips, the resilience  of subway  ridership is not as correlated spatially. 
5  However, LoR  for zones with damaged critical subway infrastructure is still significantly higher, 

such as the ones in Lower Manhattan or Coney Island. 6 

7 
8 Figure 6 Losses of Resilience (LoR). 

9 
10 
11 
12 
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1 SPATIAL ANALYSIS OF HURRICANE-INDUCED LOSS OF RESILIENCE 
2 
3 Spatial Dependence Test for Loss of Resilience (LoRs) 

4 
5 From Figure 6, spatial clustering of LoR can be visually observed. To quantitatively analyze the 
6 spatial dependence of loss of resilience (LoR), the Moran’s I test proposed by Moran (1948) 
7 (26) was conducted. Given its simplicity and intuitiveness, the Moran’s I test has been widely 
8 used to measure the spatial autocorrelation of continuous observations (27-30). The Moran’s 
9 test was used in a recent study by Xie et al. (20) to measure the spatial dependence of highway 

I

10 incident durations. The Moran’s I in matrix form is defined as (20) in Equation (5): 

(5) 
13 

11 
0( / )( ' / ' )I N S d Wd d d12 

14 where d is the vector of deviations of the 
N

LoRs from the mean, W

0S

is the spatial weights matrix 
15 between each pair of NTAs, is the total number of NTAs, and is the aggregation of spatial 

16 weights 
1 1

N N

ij

i j

w
 

 . If the distance between the centroids of NTAs i and j is less than the 

17 threshold distance, the spatial weight is dijw efined by the inverse distance between them. 

18 Otherwise, the spatial weight ijw is set to be 0. The minimum threshold distance which could 
19 ensure all the NTAs have at least one neighbor was used (31). 
20 The pseudo p-value obtained from permutation test is recommended to assess the 

21 significance of Moran’s I (32). Pseudo p-value is defined as 1
1

M

S




, where M is the number of 

22 instances with Moran’s equal to or greater than that of the observed data and S is the total 
23 number of permutations. A total of 999 permutations were performed to compute the pseudo p-
24 value. 
25 The results of Moran’s tests for highway and subway systems during Hurricanes 
26 Irene and Sandy are presented in Table 2. Please refer to Xie et al. (20) for definitions of 
27 statistics , and . It is found that all the pseudo p-values are less than 0.05, and thus 
28 the spatial dependence of LoR can be confirmed. If spatial dependence is neglected in estimating 
29  LoR, it will result in biased statistical inferences.  
30   
31  Table 2  Results of Moran’s 

I

Tests  

I [ ]E I [ ]SD I
Iz

Pseudo 
p-value 

TI_LoR 0.1176 -0.0052 0.0035 3.5273 0.0070 
TS_LoR 0.1138 -0.0052 0.0310 3.8025 0.0060 
SI_LoR 0.3184 -0.0052 0.0345 9.3733 0.0010 
SS_LoR 0.0093 -0.0052 0.0209 4.7621 0.0050 

32 
33 Interpolating Missing Loss of Resilience (LoRs) 

34 
35 In order to build the spatial model, the missing values in the input data has to be interpolated. 
36 The main task is to estimate the missing LoRs in subway data. Typically, if there is no subway 

shawn.montgomery.ctr
Cross-Out



    
 

                                                                                       

             
  

        Figur (a)), a value of 1 is used. e 7 (b), where interpolation results are not so smooth as Figure 7  

  
      

  
    

 
    

   
  

  
   

  
 

  
   

  
  

  

15 Zhu, Xie, Ozbay, Zuo, Yang 

1  station in one NTA, travelers  tend  to use the stations in nearby neighborhoods,  and their choices 
2  of station are directly related to the distance. Therefore, for NTA without direct subway service, 
3  its resilience could be represented by  the ones of all nearby stations. Inverse Distance Weighting  
4  (IDW) method is used to interpolate missing  LoR  data.  The function of  IDW is specified in 
5  Equation (6).  
6   

7 (6) 

p

i

i

i

i

i

i

i

xx
xw

xw

yxw

xf



















 1)(,
)(

)(
)(

8 where 𝑥𝑖 are points with LoR values 𝑦𝑖. The default value of exponent p is 2, however, to avoid 
9 bulls-eye effect (value near data point has sharp increase, as shown in 

10 

11 
12 Figure 7 Interpolation results of IDW using different values of p. 

13 
14 IDW can only be used for a point where missing values are surrounded by known 
15 values. Missing values not between two observations (particularly NTAs adjacent to Nassau 
16 Country of Long Island) cannot be interpolated. Instead, we assume subway riders would go to 
17 the nearest NTA with subway service. Therefore, the resilience of such zones are assumed to be 
18 the same with nearest accessible NTA. 
19 
20 Spatial Modeling of Loss of Resilience (LoRs) 

21 
22 In this section, the linear model, the spatial error model and the spatial lag model are proposed to 
23 estimate the LoR. The maximum likelihood estimation method is used for model calibration. 
24 Please refer to Xie et al. (20) for more details on model specification and estimation. 
25 
26 Linear Model 

27 
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1 A linear relationship is assumed between LoR and explanatory variables. In matrix form, it can 
2 be expressed as: 
3 

4 2~ (0, )N 

 y Xβ ε

ε I
(7) 

6 where is the vector of LoRs, is the vector of explanatory variables such as surge 
7 percentage, average elevation and population, is the vector of regression coefficients to be 
8 estimated and represents the identity matrix. In the linear model, the error term is assumed 
9 to be independent and identically distributed with mean zero and a constant variance. 

11 Spatial Error Model 

12 
13 In the spatial error model, spatial dependence is captured via spatial error correlation (omitted 
14 variables at one site can affect the dependent variable of itself and its neighboring sites). The 

spatial error model in matrix form can be specified as: 
16 

17 2~ (0, )N





  y Xβ Wu ε

ε I
(8) 

18 
19 In the spatial error model, the overall error is represented by two components, namely, is a 

spatially uncorrelated error term and is a spatially dependent error term. 
21 
22 Spatial Lag Model 

23 
24 In the spatial lag model, spatial dependence is captured through both spatial error correlation 

effects and spatial spillover effects (observed variables at one site can affect the dependent 
26 variable of itself and its neighboring sites). The spatial lag model in matrix form can be specified 
27 as: 
28 

29 2~ (0, )N





  y Xβ Wy ε

ε I
(9) 

31 where is a spatially lagged dependent variable, is a spatial autoregressive parameter, 
32 and the rest notation is as before. The assumption of error term is the same as the one in the 
33 linear model. 
34 

Model Assessment 

36 
37 is generally used to measure goodness-of-fit of model (33). However, since residuals of 
38 spatial models are not independent to each other, it is not appropriate to compare spatial models 
39 using . Instead, criteria based likelihood estimation methods can be used, such as maximum 

likelihood and Akaike Information Criterion (AIC) developed by Akaike (34) or Bayesian 
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Information Criterion (BIC) first proposed by Schwarz (35). Equation (10) and (11) specify term 
of AIC and BIC: 

max2 2AIC LL k  

max2 ln( )BIC LL k N  

(10) 
(11) 

where maxLL is the maximum of log-likelihood that can be obtained according to Xie et al. (20), 
is the parameter number and N is the sample size. If the AIC and BIC differences between k

two models are greater than 4, then the two models can be regarded as considerably different; if 
the differences are greater than 10, it provides a strong evidence that the model with a lower AIC 

and BIC should be favored (36, 37). 

Results of LoR Models 

Results of three modeling strategies in terms of 2R , AIC and BIC are displayed in Table 3. 
According to Table 3, both spatial error and spatial lag models have greater values compared 
with classic linear modeling. However, as mentioned above, due to dependence o

2R

f residuals, 2R
should be used with caution. The likelihood based criteria of AIC and BIC are presented as well. 
For scenarios of Highway (Taxi) Irene, Subway Irene and Subway Sandy, differences of BIC are 
greater than 4, which means the spatial error model is considerably better than spatial lag model. 
It indicates that the spatial autoregressive process occurs mainly in the error term. It can be seen 
from Table 3 that models estimating LoR during Sandy yield better performance than those of 
Irene. It can be revealed that the spatial correlation of LoR is stronger in Hurricane Sandy than 
Irene. In addition, modeling results of taxi network are also better than subway. Overall, the 
behavior of each model is consistent with the findings of the empirical analysis presented in the 
paper. 

Table 4 shows the modeling results of spatial error and spatial lag models. The 
autoregressive parameters in the spatial error model and in the s patial lag model are also 
reported. The selected factors for m



odeling vary in four occasions, and Pct_Surge is found to be 
the major contributor for all four scenarios. The spatial error model is used to evaluate effects of 
variables. For the interpretation of signs of coefficients in Table 4, a positive sign implies an 
expected increase in LoR, while a negative sign suggests an expected decrease. The exponents of 
coefficients can be used to measure percentage change in dependent variable with one unit 
change of explanatory variables, according to Tavassoli Hojati et al. (38). 

According to spatial error and spatial lag models shown in Table 4, in all four 
occasions, the LoRs of Taxi during Hurricane Irene is positively related to Pct_Surge, that is 
because the human activity and service status of infrastructure was directly affected due to 
landfall. As shown in Table 4(a), the LoRs of taxi in Hurricane Irene is also positively 
determined by TAT, this probably because in areas far away from transit service, people relies 
more on taxi service, then lack of alternative modes cause less resiliency in service recovery. The 
signs of zones in Queens and Brooklyn are negatively related to the LoRs, which implies that 
taxi ridership of two boroughs was more resilient during Hurricane Irene. But this conclusion 
only applies to Hurricane Irene, considering limited impact they had on two boroughs. 
According to Table 4(b) the values of LoR for the highway network during Hurricane Sandy is 
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1  positively  related to Avg_Income  and Roads_Mi. This is an interest finding that shows LoRs are  
2  also related to the zonal income level and density  of roadway. Normally, the areas of higher 
3  average income in NYC are located either in uptown Manhattan, or areas in other boroughs with 
4  considerably lower density (such as Dyker Heights, Brooklyn), where  residents prefer to use taxi 
5  for travel, so an extreme event could have more significant impact on taxi trips in such areas. 
6  The way  Avg_Income  affects LoRs can be  explained by the fact that hurricane  might  cause  
7  greater disruption to areas with longer mileage of roadway.  
8   The  LoRs of subway  network  in Irene is  found to be  negatively related to Near_Dist, 
9  Elevation and Population, which can be seen in Table 4(c). The first two are direct indicators of  

10  vulnerability of storm surge. If the  area is near the  shore or if the elevation of an area is low, it’s 
11  prone to hurricane landfall. Also the model reveals that NTAs with higher population tend to 
12  have higher transit resilience, probably due to high priority of system recovery. According  to 
13  Table 4(d), transit resilience  after Hurricane Sandy  is positively related to Employment  and 
14  negatively related to Near_Dist and Veh_Own. The relation between LoR and Employment  
15  shows the relationship  between resilience and land use. Hurricane Sandy did have significant 
16  impact on commercial areas such as Lower Manhattan, and caused severe  disruptions of business 
17  activities. In addition, the subway  network  resilience is also related to auto ownership, as areas 
18  with higher auto ownership are  also more  resilient in terms transit, which is partially  due to the  
19  fact that residents don’t have to rely on public transit or  to the  insignificance of public transit  as 
20  an alternative mode of travel. It is noticeable the  Veh_Own for  Hurricane  Irene is positively  
21  related to LoR. The main reason for the inconsistency may  be  because  Hurricane  Irene  actually  
22  didn’t cause  much damage to the system so the system is immediately  restored in the aftermath 
23  of the hurricane. It is reasonable to conclude that auto ownership affects LoR in a negative way.  
24   
25  Table 3  Model Comparisons  

TI_LoR  SI_LoR  
Linear  Spatial Error  Spatial Lag  Linear  Spatial Error  Spatial Lag  

R-Squared  0.138  0.162  0.152  0.115  0.118  0.115  
AIC  169.344  165.726  169.085  252.666  252.293  254.632  
BIC  185.709  182.091  188.723  278.03  277.657  283.166  

TS_LoR  SS_LoR  
Linear  Spatial Error  Spatial Lag  Linear  Spatial Error  Spatial Lag  

R-Squared  0.348  0.354  0.359  0.290  0.292  0.292  
AIC  548.389  547.062  547.715  653.923  653.522  655.615  
BIC  568.027  566.699  570.626  669.776  669.374  674.638  

26   
27  Table 4  Modeling Results  

28   
29  (a) Irene  Highway (Taxi)  (TI_LoR)  

 Spatial Error  Spatial Lag  
  Coefficient  Std.Error  p-value  Coefficient  Std.Error  p-value  
Constant   0.4766  0.0367   <0.0001  0.5897  0.0912  <0.0001  
Pct_Surge   0.4119  0.3067  0.1792  0.4097  0.3318  0.2169  
Queens  -0.3145  0.0518  <0.0001  -0.3656  0.0750  <0.0001  
Brooklyn  -0.1558   0.0504  0.0202  -0.1875   0.0675  0.0055  
Sub_Time  0.0052  0.0014  0.0002  0.0061  0.0018  0.0006  



19 

1 

Zhu, Xie, Ozbay, Zuo, Yang 




-0.3170 0.1663 0.0566 - - -
- - - -0.2335 0.1578 0.1390 

(b) Sandy Highway (Taxi) (TS_LoR) 
Spatial Error Spatial Lag 

Coefficient Std.Error p-value Coefficient Std.Error p-value 
Constant -0.1539 0.2758 0.5768 -0.2051 0.2623 0.4343 
Pct_Surge 1.0737 0.4244 0.0114 1.0173 0.4099 0.0131 
Near_Dist -0.0238 0.0194 0.2474 -0.0193 0.0179 0.2827 
Population -0.0097 0.0032 0.0026 -0.0089 3.176e-06 0.0052 
Avg_Income 0.0153 0.0021 <0.0001 0.0143 0.0021 <0.0001 
Roads_Mi 0.0061 0.0026 0.0169 0.0050 0.0025 0.0469 
 0.1421 0.1435 0.3221 - - -
 - - - 0.1689 0.1169 0.1486 

2 
3 (c) Irene Subway (SI_LoR) 

Spatial Error Spatial Lag 
Coefficient Std.Error p-value Coefficient Std.Error p-value 

Constant 0.9619 0.1431 <0.0001 0.9340 0.2111 <0.0001 
Pct_Surge 0.7172 0.5383 0.1828 0.5893 0.5420 0.2769 
Near_Dist -0.0108 0.0089 0.2222 -0.0113 0.0093 0.2273 
Elevation -0.0026 0.0011 0.0158 -0.0025 0.0012 0.0355 
Veh_Own 0.0443 0.0142 0.0018 0.0447 0.0148 0.0025 
Roads_Mi -0.0032 0.0017 0.0544 -0.0032 0.0017 0.0613 
Population -0.0036 0.0026 0.1587 -0.0037 0.0027 0.1591 
Bus_Stop 0.0019 0.0011 0.0740 0.0018 0.0011 0.0965 
 -0.1281 0.1837 0.4854 - - -
 - - - 0.0326 0.1634 0.8418 

4 
5 (d) Sandy Subway (SS_LoR) 

Spatial Error Spatial Lag 
Coefficient Std.Error p-value Coefficient Std.Error p-value 

Constant 4.6873 0.4150 <0.0001 4.3525 0.8037 <0.0001 
Pct_Surge 4.4688 0.7079 <0.0001 4.3400 0.7374 <0.0001 
Elevation   -0.0028 0.0039 0.4760 -0.0024 0.0038 0.5211 
Veh_Own  -0.1491 0.0417 0.0004 -0.1444 0.0421 0.0006 
Employment 0.0393 0.0146 0.00707 0.0378 0.0145 0.0093 


    
 

       
       

     
   

        
       

       
       
       

       
       

       
       

  
  

   
        

       
       
       

       
       
       
       

       
       
       

  
   

   
        

       
       
       
       

         
       
 

0.0941 0.1676 0.5743 - - -
 - - - 0.0690  0.1448  0.6336  

6   
7  CONCLUSION  
8   
9  In this study, a NTA based statistically robust spatial model is proposed to identify  

10  characteristics of  the recovery patterns for  highway  and subway networks  in NYC. One major  
11  contribution of this study  is the introduction of  the notion of spatial dependence, which 
12  complements the empirical analysis of recovery  patterns presented in our previous paper  (2). 
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Also, the estimated recovery models were built to represent the spatio-temporal recovery patterns 
using the logistic function with two parameters, with which Loss of Resilience (LoR) of each 
NTA can be calculated. Compared with evacuation zone based modeling, neighborhood based 
models can provide more detailed information about the variations in recovery behaviors. 
Moreover, instead of six logistic functions estimated for six evacuation zones in Zhu et al. (2), 
the improved spatio-temporal model has 195 NTA’s and corresponding recovery curves for both 
hurricanes. This new approach makes it possible to conduct a comprehensive spatial analysis. 
Empirical analysis of modeling results demonstrated that values of estimated model parameters 
α, 𝐻 and LoR varied greatly by individual storms, transport modes, and spatial locations. Higher 
spatial clustering of resilience is observed during Hurricane Sandy, which has greater intensities. 

The spatial dependence of LoR is also explored quantitatively in this study. By using 
Moran’s I test, it is confirmed that the LoRs are spatially correlated. Linear, spatial error and 
spatial lag models were used to estimate the LoRs using geographical, socio-economical and 
transportation features. The spatial error models outperform the others by presenting smaller AIC 
and BIC values. Results indicate that the spatial autoregressive process occurs mainly in the error 
term. Omitted variables are the major cause of spatial correlation. Factors such as the percentage 
of area influenced by storm surges, the distance to the coast and the average elevation are found 
to affect the infrastructure resilience with respect to hurricanes. It is likely that contributing 
factors to the infrastructure resilience when confronting other disruptions such as earthquakes 
and tornadoes would be different. 

As a result of the introduction of a smaller modeling unit for the zones and the study of 
spatial dependence, this paper is able to provide a deeper insight into the vulnerability of 
highway and transit networks in NYC compared with previous studies (2-4). The spatial error 
and lag models for LoR can be used as an estimation tool of vulnerability assessment in response 
to future storms, by using socio-economic and projected surge zone information. These models 
can also be useful for government agencies and policy makers dealing with emergency 
management. 

However it should be emphasized that the results presented in this paper may not be 
directly transferrable to other cities, considering the uniqueness and complexity of the 
transportation network in NYC. To predict recovery performance of post-hurricane recovery in 
other regions, this model needs to be re-calibrated using empirical data or simulated data from 
regional multi-modal network models. 

The future improvement and calibration of this proposed methodology may consider 
other factors related critical corridors, especially additional factors from highway and subway 
lines, since their recovery patterns may resemble within a common corridor. Another future 
research direction is to investigate the factors contributing to the infrastructure resilience when 
faced with other types of natural disasters. 
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